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Challenges to Petascale Scientific
Computing that architecture can help

• Bringing orders of magnitude greater sustained performance and
memory capacity to real-world scientific applications
– Many problems are Exa(fl)ops scale or greater

• Exploiting ultra-massive parallelism at all levels
– Either automatic discovery or ease of representation
– Hardware use for reduced time or latency hiding

• Breaking the “barrier”
– Moving away from global barrier synchronization
– Over constrained

• Removing burden of explicit manual resource allocation
– Locality management
– Load balancing

• Memory wall
– Accelerating memory intense problems
– Hardware structures for latency tolerance
– Enabling efficient sparse irregular data structures manipulation

• Greater availability and cheaper machines



Challenges to Computer Architecture
• Expose and exploit extreme fine-grain parallelism

– Possibly multi-billion-way
– Data structure-driven

• State storage takes up much more space than logic
– 1:1 flops/byte ratio infeasible
– Memory access bandwidth is the critical resource

• Latency
– can approach a hundred thousand cycles
– All actions are local
– Contention due to inadequate bandwidth

• Overhead for fine grain parallelism must be very small
– or system can not scale
– One consequence is that global barrier synchronization is untenable

• Reliability
– Very high replication of elements
– Uncertain fault distribution
– Fault tolerance essential for good yield

• Design complexity
– Impacts development time, testing, power, and reliability



Metric of Physical Locality, τ

• Locality of operation dependent on amount of logic and
state that can be accessed round-trip within a single
clock cycle

• Define τ as ratio of number of elements (e.g., gates,
transistors) per chip to the number of elements
accessible within a single clock cycle

• Not just a speed of light issue
• Also involves propagation through sequence of

elements
• When I was an undergrad, τ = 1
• Today, τ > 30
• For SFQ at 100 GHz, 100 < τ < 1000
• At nano-scale, τ > 100,000



A Sustainable Strategy for Long Term
Investment in Technology Trends

• Message-driven split-transaction parallel computing
– Alternative parallel computing model
– Parallel programming languages
– Adaptable ultra lightweight runtime kernel
– Hardware co-processors that manage threads and “active messages”

• Memory accelerator
– Exploits embedded DRAM technology
– Lightweight MIND data processing accelerator co-processors

• Heterogeneous System Architecture
– Very high speed numeric processor for high temporal locality
– Plus eco-system co-processor for parcel/multithreading
– Plus memory accelerator chips
– Data pre-staging



Asynchronous Message Driven
Split-Transaction Computing

• Powerful mechanism for hiding system-wide
latency

• All operations are local

• Transactions performed on local data in
response to incident messages (parcels)

• Results may include outgoing parcels

• No waiting for response to remote requests
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Latency Hiding with Parcels
with respect to System Diameter in cycles

Sensitivity to Remote Latency and Remote Access Fraction
16 Nodes

deg_parallelism in RED (pending parcels @ t=0 per node)
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Latency Hiding with Parcels
Idle Time with respect to Degree of Parallelism

Idle Time/Node

(number of nodes in black)
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 Multi-Core Microprocessor with
Memory Accelerator Co-processor
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Simulation of Performance Gain
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ParalleX: A Latency Tolerant Parallel
Computing Strategy

• split-transaction programming model (Dally, Culler)

• Distributed shared memory – not cache coherent
(Scott, UPC)

• Embodies copy semantics in the form of location
consistency (Gao)

• Message-driven (Hewitt)

• Multithreaded (Smith/Callahan)

• Futures synchronization (Halstead)

• Local Control Objects (e.g. dataflow synchronization)

• In-memory synchronization for producer-consumer
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Long Bow Architecture Attributes

• Latency Hiding Architecture
• Heterogeneous based on temporal locality

– Low/no temporal locality high memory bandwidth logic
– Hi temporal locality high clock rate ALU intensive structures

• Asynchronous
– Remote message-driven
– Local multithreaded, dataflow
– Rich array of synchronization primitives including in-memory and

in-register
• Global shared memory

– Not cache coherence
– Location consistency

• Percolation for prestaging
– Flow control managed by MIND array
– Processors are dumb, memory is smart

• Graceful Degradation
– Isolation of replicated structures



High Speed Computing Element

• A kind of streaming architecture
– Merrimac

– Trips

• Employs array of ALUs in static data flow structure

• Temporary values passed directly between
successive ALUs

• Data flow synchronization for asymmetric flow graphs

• Packet switched (rather than line switched)

• More general than pure SIMD

• Initialized (and take down) by MIND via percolation

• Multiple coarse-grain threads



Concepts of the MIND Architecture

• Virtual to physical address translation in memory
– Global distributed shared memory thru distributed directory table
– Dynamic page migration
– Wide registers serve as context sensitive TLB

• Multithreaded control
– Unified dynamic mechanism for resource management
– Latency hiding
– Real time response

• Parcel active message-driven computing
– Decoupled split-transaction execution
– System wide latency hiding
– Move work to data instead of data to work

• Parallel atomic struct processing
– Exploits direct access to wide rows of memory banks for fine grain

parallelism and guarded compound operations
– Exploits parallelism for better performance
– Enables very efficient mechanisms for synchronization

• Fault tolerance through graceful degradation
• Active power management



Chip Layout
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MIND Memory Accelerator
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Top 10 Challenges in HPC Architecture
concepts, semantics, mechanisms, and structures

• 10: Inter-chip high bandwidth data interconnect

• 9: Scalability through locality-oriented asynchronous control

• 8: Global name space translation including first-class processes
for direct resource management

• 7: Multithreaded intra process flow control

• 6: Graceful degradation for reliability and high yield

• 5: Accelerators for lightweight-object synchronization including
futures and other in-memory synchronization for mutual exclusion

• 4: Merger of data-links and go-to flow control semantics for
directed graph traversal

• 3: In memory logic for memory accelerator for effective no-locality
execution

• 2: Message-driven split-transaction processing

• 1: New execution model governing parallel computing



Some Revolutionary Changes Won’t
Come from Architecture

• Debugging
– Can be eased with hardware diagnostics

• Problem set up
– e.g., mesh generation

• Data analysis
– Science understanding

– Computer visualization – an oxymoron
• Computers don’t know how to abstract knowledge from data

• Once people visualize, the insight can’t be computerized

• Problem specification – easier to program
– Better architectures are will be easier to program

– But problem representation can be intrinsically hard

• New models for advanced phenomenology
– New algorithms

– New physics


